26 research outputs found

    An asymmetric high serial rate TDM-PON with single carrier 25 Gb/s upstream and 50 Gb/s downstream

    Get PDF
    We report a 2:1 rate asymmetric high serial rate time division multiplexing passive optical network (TDM-PON) with single carrier 25 Gb/s upstream and 50 Gb/s downstream. In the upstream, we present a first 25 Gb/s three-level modulated burst-mode receiver employing a 1/4-rate linear burst-mode avalanch photodiode transimpedance amplifier and a custom decoder IC. We successfully demonstrated burst-mode sensitivity of -20.4 dBm with 18 dB dynamic burst-to-burst for 25 Gb/s upstream links. In another direction, a downstream in upper O-band is proposed and demonstrated with three-level duo-binary modulation at 50 Gb/s in real time. The upstream and downstream transmission experiments show that the proposed asymmetric 50 G/25 G high serial rate TDM-PON can support >= 32 users while covering more than 20 km reach

    DISCUS: the distributed core for ubiquitous broadband access

    Get PDF
    A new end to end architecture based on Long-Reach Passive Optical Network (LR-PON) with wireless integration, a distributed core built of optical transparency islands and an OpenFlow-based control plane, which is being developed in the EU project DISCUS, is described in this paper. The main technological advances and the network modelling and optimization approach are reported

    DISCUS: end-to-end network design for ubiquitous high speed broadband services

    Get PDF
    Fibre-to-the-premises (FTTP) has been long sought as the ultimate solution to satisfy the demand for broadband access in the foreseeable future, and offer distance-independent data rate within access network reach. However, currently deployed FTTP networks have in most cases only replaced the transmission medium, without improving the overall architecture, resulting in deployments that are only cost efficient in densely populated areas (effectively increasing the digital divide). In addition, the large potential increase in access capacity cannot be matched by a similar increase in core capacity at competitive cost, effectively moving the bottleneck from access to core. DISCUS is a European Integrated Project that, building on optical-centric solutions such as Long-Reach Passive Optical access and flat optical core, aims to deliver a cost-effective architecture for ubiquitous broadband services. One of the key features of the project is the end-to-end approach, which promises to deliver a complete network design and a conclusive analysis of its economic viability

    DISCUS : an end-to-end solution for ubiquitous broadband optical access

    Get PDF
    Fiber to the premises has promised to increase the capacity in telecommunications access networks for well over 30 years. While it is widely recognized that optical-fiber-based access networks will be a necessity in the shortto medium-term future, its large upfront cost and regulatory issues are pushing many operators to further postpone its deployment, while installing intermediate unambitious solutions such as fiber to the cabinet. Such high investment cost of both network access and core capacity upgrade often derives from poor planning strategies that do not consider the necessity to adequately modify the network architecture to fully exploit the cost benefit that a fiber-centric solution can bring. DISCUS is a European Framework 7 Integrated Project that, building on optical-centric solutions such as long-reach passive optical access and flat optical core, aims to deliver a cost-effective architecture for ubiquitous broadband services. DISCUS analyzes, designs, and demonstrates end-to-end architectures and technologies capable of saving cost and energy by reducing the number of electronic terminations in the network and sharing the deployment costs among a larger number of users compared to current fiber access systems. This article describes the network architecture and the supporting technologies behind DISCUS, giving an overview of the concepts and methodologies that will be used to deliver our end-to-end network solution
    corecore